Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biomed Pharmacother ; 170: 116038, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141281

RESUMO

Cholangiocarcinomas (CCAs) are cancers originated in the biliary tree, which are characterized by their high mortality and marked chemoresistance, partly due to the activity of ATP-binding cassette (ABC) export pumps, whose inhibition has been proposed as a strategy for enhancing the response to chemotherapy. We have previously shown that ß-caryophyllene oxide (CRYO) acts as a chemosensitizer in hepatocellular carcinoma by inhibiting ABCB1, MRP1, and MRP2. Here, we have evaluated the usefulness of CRYO in inhibiting BCRP and improving the response of CCA to antitumor drugs. The TCGA-CHOL cohort (n = 36) was used for in silico analysis. BCRP expression (mRNA and protein) was assayed in samples from intrahepatic (iCCA) and extrahepatic (eCCA) tumors (n = 50) and CCA-derived cells (EGI-1 and TFK-1). In these cells, BCRP-dependent mitoxantrone transport was determined by flow cytometry. At non-toxic concentrations, CRYO inhibited BCRP function, which enhanced the cytostatic effect of drugs used in the treatment of CCA. The BCRP ability to confer resistance to a panel of antitumor drugs was determined in Chinese hamster ovary (CHO) cells with stable BCRP expression. At non-toxic concentrations, CRYO markedly reduced BCRP-induced resistance to known substrate drugs (mitoxantrone and SN-38) and cisplatin, gemcitabine, sorafenib, and 5-FU but not oxaliplatin. Neither CRYO nor cisplatin alone significantly affected the growth of BCRP-expressing tumors subcutaneously implanted in immunodeficient mice. In contrast, intratumor drug content was enhanced when administered together, and tumor growth was inhibited. In sum, the combined treatment of drugs exported by BCRP with CRYO can improve the response to chemotherapy in CCA patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Cricetinae , Humanos , Camundongos , Animais , Cisplatino/farmacologia , Mitoxantrona/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Células CHO , Resistencia a Medicamentos Antineoplásicos , Transportadores de Cassetes de Ligação de ATP , Proteínas de Neoplasias/metabolismo , Cricetulus , Antineoplásicos/farmacologia , Colangiocarcinoma/tratamento farmacológico , Linhagem Celular Tumoral
2.
Biomed Pharmacother ; 168: 115658, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832404

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) is a highly lethal cancer originated in the biliary tree. Available treatments for CCA are scarcely effective, partly due to mechanisms of chemoresistance, such as aberrant activation of Wnt/ß-catenin pathway and dysfunctional p53. AIM: To evaluate the impact of enhancing the expression of negative regulators of the Wnt/ß-catenin pathway (AXIN1, AXIN2, and GSK3B) and the tumor suppressor gene TP53. METHODS: Gene expression in paired samples of CCA and adjacent non-tumor liver tissue was determined by RT-qPCR and immunohistochemistry (IHC). Using lentiviral vectors, CCA cells were transduced with genes of interest to assess their impact on the resistome (TLDA), apoptosis (annexin V/propidium iodide), and decreased cell viability (MTT). RESULTS: IHC revealed marked nuclear localization of ß-catenin, consistent with Wnt/ß-catenin pathway activation. In silico analysis with data from TCGA showed heterogeneous down-regulation of AXIN1, AXIN2, and GSK3B in CCA. Enhancing the expression of AXIN1, AXIN2, and GSK3B in CCA cells was not enough to block the activity of this signaling pathway or significantly modify resistance to 5-FU, gemcitabine, and platinated drugs. Consistent with impaired p53 function, CDKN1A was down-regulated in CCA. Forced TP53 expression induced p21 up-regulation and reduced cell proliferation. Moreover, the resistome was modified (FAS, BAX, TYMP, and CES2 up-regulation along with DHFR, RRM1, and BIRC5 down-regulation), which was accompanied by enhanced sensitivity to some antitumor drugs, mainly platinated drugs. CONCLUSION: Enhancing TP53 expression, but not that of AXIN1, AXIN2, and GSK3B, in CCA cells may be a useful strategy to sensitize CCA to antitumor drugs.


Assuntos
Antineoplásicos , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Antineoplásicos/farmacologia , Via de Sinalização Wnt , Proliferação de Células , Linhagem Celular Tumoral , Ductos Biliares Intra-Hepáticos/metabolismo
3.
Biochem Pharmacol ; 214: 115681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429423

RESUMO

Although pharmacological treatment is the best option for most patients with advanced hepatocellular carcinoma (HCC), its success is very limited, partly due to reduced uptake and enhanced efflux of antitumor drugs. Here we have explored the usefulness of vectorizing drugs towards the organic anion transporting polypeptide 1B3 (OATP1B3) to enhance their efficacy against HCC cells. In silico studies (RNA-Seq data, 11 cohorts) and immunohistochemistry analyses revealed a marked interindividual variability, together with general downregulation but still expression of OATP1B3 in the plasma membrane of HCC cells. The measurement of mRNA variants in 20 HCC samples showed the almost absence of the cancer-type variant (Ct-OATP1B3) together with marked predominance of the liver-type variant (Lt-OATP1B3). In Lt-OATP1B3-expressing cells, the screening of 37 chemotherapeutical drugs and 17 tyrosine kinase receptors inhibitors (TKIs) revealed that 10 classical anticancer drugs and 12 TKIs were able to inhibit Lt-OATP1B3-mediated transport. Lt-OATP1B3-expressing cells were more sensitive than Mock parental cells (transduced with empty lentiviral vectors) to some Lt-OATP1B3 substrates (paclitaxel and the bile acid-cisplatin derivative Bamet-UD2), but not to cisplatin, which is not transported by Lt-OATP1B3. This enhanced response was abolished by competition with taurocholic acid, a known Lt-OATP1B3 substrate. Tumors subcutaneously generated in immunodeficient mice by Lt-OATP1B3-expressing HCC cells were more sensitive to Bamet-UD2 than those derived from Mock cells. In conclusion, Lt-OATP1B3 expression should be screened before deciding the use of anticancer drugs substrates of this carrier in the personalized treatment of HCC. Moreover, Lt-OATP1B3-mediated uptake must be considered when designing novel anti-HCC targeted drugs.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transportadores de Ânions Orgânicos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Cisplatino/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Humanos
4.
Cells ; 12(8)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190050

RESUMO

The poor prognosis of most cases of advanced cholangiocarcinoma (CCA) constitutes a severe problem in modern oncology, which is aggravated by the fact that the incidence of this liver cancer is increasing worldwide and is often diagnosed late, when surgical removal is not feasible. The difficulty of dealing with this deadly tumor is augmented by the heterogeneity of CCA subtypes and the complexity of mechanisms involved in enhanced proliferation, apoptosis avoidance, chemoresistance, invasiveness, and metastasis that characterize CCA. Among the regulatory processes implicated in developing these malignant traits, the Wnt/ß-catenin pathway plays a pivotal role. Alteration of ß-catenin expression and subcellular localization has been associated with worse outcomes in some CCA subtypes. This heterogeneity, which also affects cellular and in vivo models commonly used to study CCA biology and anticancer drug development, must be taken into account for CCA investigation to more accurately extrapolate basic laboratory research to the clinical situation. A better understanding of the altered Wnt/ß-catenin pathway in relationship with the heterogeneous forms of CCA is mandatory for developing novel diagnostic tools and therapeutic strategies for patients suffering from this lethal disease.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/patologia , Via de Sinalização Wnt , Ductos Biliares Intra-Hepáticos/patologia
5.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34771514

RESUMO

Forkhead box O3 (FOXO3), an essential transcription factor related to liver disease, has been linked to cancer progression. The most frequent primary liver tumor, hepatocellular carcinoma (HCC), has an elevated mortality rate and patient outcomes remain very poor. Here, we examined the diagnostic, prognostic and clinicopathological significance of FOXO3 expression in HCC. We systematically searched Cochrane, Embase, PubMed, Scopus and Web of Science. Articles analyzing FOXO3 levels in HCC patient samples and its relationship with tumor development, survival or clinicopathological factors were selected. Hazard ratios, odds ratios and 95% confidence intervals were extracted, estimated by Parmar method or calculated and pooled across studies. Heterogeneity was evaluated by chi-square-based Q and I2 tests, while publication bias by funnel plots and Egger's test. Subgroup analysis was performed when heterogeneity was evident. The study protocol was registered in PROSPERO (CRD42021237321), and data were meta-analyzed employing STATA 16. Five studies involving 1059 HCC cases were finally included in this meta-analysis, finding that high FOXO3 levels significantly correlate with HCC development and shorter overall survival. Moreover, subgroup analysis revealed a significant association between positive FOXO3 expression and the risk of invasion. Thus, FOXO3 could function as a novel biomarker with diagnostic and prognostic value in HCC.

6.
Biochem Pharmacol ; 193: 114810, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34673012

RESUMO

A shared characteristic of many tumors is the lack of response to anticancer drugs. Multiple mechanisms of pharmacoresistance (MPRs) are involved in permitting cancer cells to overcome the effect of these agents. Pharmacoresistance can be primary (intrinsic) or secondary (acquired), i.e., triggered or enhanced in response to the treatment. Moreover, MPRs usually result in the lack of sensitivity to several agents, which accounts for diverse multidrug-resistant (MDR) phenotypes. MPRs are based on the dynamic expression of more than one hundred genes, constituting the so-called resistome. Alternative splicing (AS) during pre-mRNA maturation results in changes affecting proteins involved in the resistome. The resulting splicing variants (SVs) reduce the efficacy of anticancer drugs by lowering the intracellular levels of active agents, altering molecular targets, enhancing both DNA repair ability and defensive mechanism of tumors, inducing changes in the balance between pro-survival and pro-apoptosis signals, modifying interactions with the tumor microenvironment, and favoring malignant phenotypic transitions. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the impact of AS on MPR in cancer cells.


Assuntos
Processamento Alternativo , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Regulação Neoplásica da Expressão Gênica , Humanos
7.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008179

RESUMO

The two most frequent primary cancers affecting the liver, whose incidence is growing worldwide, are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), which are among the five most lethal solid tumors with meager 5-year survival rates. The common difficulty in most cases to reach an early diagnosis, the aggressive invasiveness of both tumors, and the lack of favorable response to pharmacotherapy, either classical chemotherapy or modern targeted therapy, account for the poor outcome of these patients. Alternative splicing (AS) during pre-mRNA maturation results in changes that might affect proteins involved in different aspects of cancer biology, such as cell cycle dysregulation, cytoskeleton disorganization, migration, and adhesion, which favors carcinogenesis, tumor promotion, and progression, allowing cancer cells to escape from pharmacological treatments. Reasons accounting for cancer-associated aberrant splicing include mutations that create or disrupt splicing sites or splicing enhancers or silencers, abnormal expression of splicing factors, and impaired signaling pathways affecting the activity of the splicing machinery. Here we have reviewed the available information regarding the impact of AS on liver carcinogenesis and the development of malignant characteristics of HCC and iCCA, whose understanding is required to develop novel therapeutical approaches aimed at manipulating the phenotype of cancer cells.

8.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933095

RESUMO

The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).

9.
Cancers (Basel) ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751679

RESUMO

Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer, the fifth according to the frequency and the third among the deadliest cancers. GAC high mortality is due to a combination of factors, such as silent evolution, late clinical presentation, underlying genetic heterogeneity, and effective mechanisms of chemoresistance (MOCs) that make the available antitumor drugs scarcely useful. MOCs include reduced drug uptake (MOC-1a), enhanced drug efflux (MOC-1b), low proportion of active agents in tumor cells due to impaired pro-drug activation or active drug inactivation (MOC-2), changes in molecular targets sensitive to anticancer drugs (MOC-3), enhanced ability of cancer cells to repair drug-induced DNA damage (MOC-4), decreased function of pro-apoptotic factors versus up-regulation of anti-apoptotic genes (MOC-5), changes in tumor cell microenvironment altering the response to anticancer agents (MOC-6), and phenotypic transformations, including epithelial-mesenchymal transition (EMT) and the appearance of stemness characteristics (MOC-7). This review summarizes updated information regarding the molecular bases accounting for these mechanisms and their impact on the lack of clinical response to the pharmacological treatment currently used in GAC. This knowledge is required to identify novel biomarkers to predict treatment failure and druggable targets, and to develop sensitizing strategies to overcome drug refractoriness in GAC.

10.
Cells ; 9(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098199

RESUMO

The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, which mainly occurs through transporters of the superfamily of solute carrier (SLC) proteins, and the active export of drugs from cancer cells, mainly through members of families B, C and G of ATP-binding cassette (ABC) proteins. Both mechanisms result in decreased amounts of active drugs able to reach their intracellular targets. Therefore, the "cancer transportome", defined as the set of transporters expressed at a given moment in the tumor, is an essential element for defining the multidrug resistance (MDR) phenotype of cancer cells. For this reason, during the last two decades, plasma membrane transporters have been envisaged as targets for the development of strategies aimed at sensitizing cancer cells to chemotherapy, either by increasing the uptake or reducing the export of antitumor agents by modulating the expression/function of SLC and ABC proteins, respectively. Moreover, since some elements of the transportome are differentially expressed in CCA, their usefulness as biomarkers with diagnostic and prognostic purposes in CCA patients has been evaluated.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/uso terapêutico , Membrana Celular/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas Carreadoras de Solutos/metabolismo , Transportadores de Cassetes de Ligação de ATP/agonistas , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores/metabolismo , Colangiocarcinoma/diagnóstico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Transporte Proteico , Proteínas Carreadoras de Solutos/agonistas , Proteínas Carreadoras de Solutos/antagonistas & inibidores
11.
Biochem Pharmacol ; 171: 113682, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669256

RESUMO

Owing to intrinsic and acquired chemoresistance, the response of gastric adenocarcinoma (GAC) to chemotherapy is very poor. Here we have investigated the role of transportome in reducing the intracellular content of anticancer drugs and conferring multidrug resistance (MDR) phenotype. Tumors specimens and paired adjacent tissue were analyzed to determine the MDR signature by TaqMan Low-Density Arrays and single-gene qPCR. Strategies of sensitization were evaluated in vitro using the GAC-derived cell line AGS and in vivo using a subcutaneous xenograft model in immunodeficient nude mice. Several transporters involved in drug uptake and export, which are present in healthy stomach, were highly expressed in GAC. In contrast, the cancer-type OATP1B3 was almost exclusively expressed in tumor tissue. The transportome profile varied depending on tumor anatomical location, differentiation, and stage. Immunofluorescence analysis revealed high MRP1 and MRP4 expression at the plasma membrane of tumor cells as well as AGS cells in culture, in which MRP inhibition resulted in selective sensitization to cytotoxic MRP substrates, such as sorafenib, docetaxel, etoposide, and doxorubicin. In mice with subcutaneous tumors formed by AGS cells, sorafenib alone failed to prevent tumor growth. In contrast, this drug induced a marked inhibitory effect when it was co-administered with diclofenac. In conclusion, MRP1 and MRP4 play an important role in the lack of response of GAC to drugs that are transported by these export pumps. Moreover, agents, such as sorafenib, considered at present useless to treat GAC, may become active antitumor drugs when co-administered with non-toxic MRP inhibitors, such as diclofenac.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Diclofenaco/administração & dosagem , Docetaxel/administração & dosagem , Doxorrubicina/administração & dosagem , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sorafenibe/administração & dosagem , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Hepatology ; 72(3): 949-964, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31863486

RESUMO

BACKGROUND AND AIMS: A limitation for the treatment of unresectable cholangiocarcinoma (CCA) is its poor response to chemotherapy, which is partly due to reduction of intracellular levels of anticancer drugs through ATP-binding cassette (ABC) pumps. Low expression of SOX17 (SRY-box containing gene 17), a transcription factor that promotes biliary differentiation and phenotype maintenance, has been associated with cholangiocyte malignant transformation. Whether SOX17 is also involved in CCA chemoresistance is investigated in this study. APPROACH AND RESULTS: SOX17 expression in human CCA cells (EGI-1 and TFK-1) selectively potentiated cytotoxicity of SN-38, 5-fluorouracil and mitoxantrone, but not that of gemcitabine, capecitabine, cisplatin, or oxaliplatin. The analysis of the resistome by TaqMan low-density arrays revealed changes affecting primarily ABC pump expression. Single-gene quantitative real-time PCR, immunoblot, and immunofluorescence analyses confirmed that MRP3 (multidrug resistance associated protein 3), which was highly expressed in CCA human tumors, was down-regulated in SOX17-transduced CCA cells. The substrate specificity of this pump matched that of SOX17-induced in vitro selective chemosensitization. Functional studies showed lower ability of SOX17-expressing CCA cells to extrude specific MRP3 substrates. Reporter assay of MRP3 promoter (ABCC3pr) revealed that ABCC3pr activity was inhibited by SOX17 expression and SOX2/SOX9 silencing. The latter was highly expressed in CCA. Moreover, SOX2/9, but not SOX17, induced altered electrophoretic mobility of ABCC3pr, which was prevented by SOX17. The growth of CCA tumors subcutaneously implanted into immunodeficient mice was inhibited by 5-fluorouracil. This effect was enhanced by co-treatment with adenoviral vectors encoding SOX17. CONCLUSIONS: SOX9/2/17 are involved in MRP3-mediated CCA chemoresistance. Restored SOX17 expression, in addition to its tumor suppression effect, induces selective chemosensitization due to MRP3 down-regulation and subsequent intracellular drug accumulation.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteínas HMGB/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Antineoplásicos/farmacologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancers (Basel) ; 11(11)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671735

RESUMO

The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.

14.
Hepatology ; 70(4): 1246-1261, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30972782

RESUMO

Although the multi-tyrosine kinase inhibitor sorafenib is useful in the treatment of several cancers, cholangiocarcinoma (CCA) is refractory to this drug. Among other mechanisms of chemoresistance, impaired uptake through human organic cation transporter type 1 (hOCT1) (gene SLC22A1) has been suggested. Here we have investigated the events accounting for this phenotypic characteristic and have evaluated the interest of selective gene therapy strategies to overcome this limitation. Gene expression and DNA methylation of SLC22A1 were analyzed using intrahepatic (iCCA) and extrahepatic (eCCA) biopsies (Copenhagen and Salamanca cohorts; n = 132) and The Cancer Genome Atlas (TCGA)-CHOL (n = 36). Decreased hOCT1 mRNA correlated with hypermethylation status of the SLC22A1 promoter. Treatment of CCA cells with decitabine (demethylating agent) or butyrate (histone deacetylase inhibitor) restored hOCT1 expression and increased sorafenib uptake. MicroRNAs able to induce hOCT1 mRNA decay were analyzed in paired samples of TCGA-CHOL (n = 9) and Copenhagen (n = 57) cohorts. Consistent up-regulation in tumor tissue was found for miR-141 and miR-330. High proportion of aberrant hOCT1 mRNA splicing in CCA was also seen. Lentiviral-mediated transduction of eCCA (EGI-1 and TFK-1) and iCCA (HuCCT1) cells with hOCT1 enhanced sorafenib uptake and cytotoxic effects. In chemically induced CCA in rats, reduced rOct1 expression was accompanied by impaired sorafenib uptake. In xenograft models of eCCA cells implanted in mouse liver, poor response to sorafenib was observed. However, tumor growth was markedly reduced by cotreatment with sorafenib and adenoviral vectors encoding hOCT1 under the control of the BIRC5 promoter, a gene highly up-regulated in CCA. Conclusion: The reason for impaired hOCT1-mediated sorafenib uptake by CCA is multifactorial. Gene therapy capable of selectively inducing hOCT1 in tumor cells can be considered a potentially useful chemosensitization strategy to improve the response of CCA to sorafenib.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Regulação para Baixo/genética , Fator 1 de Transcrição de Octâmero/genética , Inibidores de Proteínas Quinases/farmacologia , Sorafenibe/farmacologia , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Metilação de DNA/genética , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Terapia Genética/métodos , Humanos , Immunoblotting , Masculino , RNA Mensageiro/genética , Distribuição Aleatória , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estatísticas não Paramétricas
15.
Liver Int ; 39 Suppl 1: 43-62, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30903728

RESUMO

Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Resistência a Medicamentos , Terapia de Alvo Molecular , Transdução de Sinais , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Humanos
16.
Cancers (Basel) ; 11(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909445

RESUMO

The most frequent liver tumor in children is hepatoblastoma (HB), which derives from embryonic parenchymal liver cells or hepatoblasts. Hepatocellular carcinoma (HCC), which rarely affects young people, causes one fourth of deaths due to cancer in adults. In contrast, HB usually has better prognosis, but this is still poor in 20% of cases. Although more responsive to chemotherapy than HCC, the failure of pharmacological treatment used before and/or after surgical resection is an important limitation in the management of patients with HB. To advance in the implementation of personalized medicine it is important to select the best combination among available anti-HB drugs, such as platinum derivatives, anthracyclines, etoposide, tyrosine-kinase inhibitors, Vinca alkaloids, 5-fluorouracil, monoclonal antibodies, irinotecan and nitrogen mustards. This requires predicting the sensitivity to these drugs of each tumor at each time because, it should be kept in mind, that cancer chemoresistance is a dynamic process of Darwinian nature. For this goal it is necessary to improve our understanding of the mechanisms of chemoresistance involved in the refractoriness of HB against the pharmacological challenge and how they evolve during treatment. In this review we have summarized the current knowledge on the multifactorial and complex factors responsible for the lack of response of HB to chemotherapy.

17.
Arch Toxicol ; 93(3): 623-634, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30659321

RESUMO

Several ATP-binding cassette (ABC) proteins reduce intracellular concentrations of antitumor drugs and hence weaken the response of cancer cells to chemotherapy. Accordingly, the inhibition of these export pumps constitutes a promising strategy to chemosensitize highly chemoresistant tumors, such as hepatocellular carcinoma (HCC). Here, we have investigated the ability of ß-caryophyllene oxide (CRYO), a naturally occurring sesquiterpene component of many essential oils, to inhibit, at non-toxic doses, ABC pumps and improve the response of HCC cells to sorafenib. First, we have obtained a clonal subline (Alexander/R) derived from human hepatoma cells with enhanced multidrug resistance (MDR) associated to up-regulation (mRNA and protein) of MRP1 and MRP2. Analysis of fluorescent substrates export (flow cytometry) revealed that CRYO did not affect the efflux of fluorescein (MRP3, MRP4 and MRP5) but inhibited that of rhodamine 123 (MDR1) and calcein (MRP1 and MRP2). This ability was higher for CRYO than for other sesquiterpenes assayed. CRYO also inhibited sorafenib efflux, increased its intracellular accumulation (HPLC-MS/MS) and enhanced its cytotoxic response (MTT). For comparison, the effect of known ABC pumps inhibitors was also determined. They induced strong (diclofenac on MRPs), modest (verapamil on MDR1) or null (fumitremorgin C on BCRP) effect on sorafenib efflux and cytotoxicity. In the mouse xenograft model, the response to sorafenib treatment of subcutaneous tumors generated by mouse hepatoma Hepa 1-6/R cells, with marked MDR phenotype, was significantly enhanced by CRYO co-administration. In conclusion, at non-toxic dose, CRYO is able to chemosensitizating liver cancer cells to sorafenib by favoring its intracellular accumulation.


Assuntos
Antineoplásicos/toxicidade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sesquiterpenos Policíclicos/metabolismo , Sorafenibe/toxicidade , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Humanos , Neoplasias Hepáticas , Camundongos , Proteínas de Neoplasias
18.
Br J Pharmacol ; 176(6): 787-800, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30592786

RESUMO

BACKGROUND AND PURPOSE: The expression of the human organic cation transporter-1 (hOCT1, gene SLC22A1) is reduced in hepatocellular carcinoma (HCC). The molecular bases of this reduction and its relationship with the poor response of HCC to sorafenib were investigated. EXPERIMENTAL APPROACH: HCC transcriptomes from 366 samples available at TCGA were analysed. Alternative splicing was determined by RT-PCR. The role of miRNAs in SLC22A1 downregulation was investigated. Expression of Oct1 was measured in rodent HCC models (spontaneously generated in Fxr-/- mice and chemically-induced in rats). hOCT1 was overexpressed in human hepatoma cells (HuH7 and HepG2). Sorafenib and regorafenib uptake was determined by HPLC-MS/MS. KEY RESULTS: hOCT1 overexpression enhanced sorafenib, but not regorafenib, quinine-inhibitable uptake by hepatoma cells. In rodent HCC, Oct1 was downregulated, which was accompanied by impaired sorafenib uptake. In mice with s.c.-implanted HCC, sorafenib inhibited the growth of hOCT1 overexpressing tumours. In human HCC, hOCT1 expression was inversely correlated with SLC22A1 promoter methylation, whereas demethylation with decitabine enhanced hOCT1 expression in hepatoma cells. Increased proportion of aberrant hOCT1 mRNA variants was found in HCC samples. In silico analysis identified six miRNAs as candidates to target hOCT1 mRNA. When overexpressed in HepG2 cells a significant hOCT1 mRNA decay was induced by hsa-miR-330 and hsa-miR-1468. Analysis of 39 paired tumour/adjacent samples from TCGA revealed that hsa-mir-330 was consistently upregulated in HCC. CONCLUSION AND IMPLICATIONS: Impaired hOCT1 expression/function in HCC, in part due to epigenetic modifications, plays an important role in the poor pharmacological response of this cancer to sorafenib.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Fator 1 de Transcrição de Octâmero/antagonistas & inibidores , Sorafenibe/farmacologia , Animais , Células CHO , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Cricetulus , Ensaios de Seleção de Medicamentos Antitumorais , Epigênese Genética/genética , Perfilação da Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Fator 1 de Transcrição de Octâmero/genética , Fator 1 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
19.
Oncotarget ; 9(47): 28474-28485, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29983874

RESUMO

BACKGROUND: Chemoresistance often limits the success of the pharmacological treatment in acute myeloid leukemia (AML) patients. Although positive results have been obtained with tyrosine kinase inhibitors (TKIs), such as sorafenib, especially in patients with Fms-like tyrosine kinase 3 (FLT3)-positive AML, the success of chemotherapy is very heterogeneous. Here we have investigated in vitro whether the transportome (set of expressed plasma membrane transporters) is involved in the differential response of AML to sorafenib. METHODS: The sensitivity to sorafenib-induced cell death (MTT test and anexin V/7-AAD method) was evaluated in five different cell lines: MOLM-13, OCI-AML2, HL-60, HEL and K-562. The transportome was characterized by measuring mRNA using RT-qPCR. Drug uptake/efflux was determined by flow cytometry using specific substrates and inhibitors. RESULTS: The cytostatic response to sorafenib was: MOLM-13>>OCI-AML2>HL-60>HEL≈K-562. Regarding efflux pumps, MDR1 was highly expressed in HEL>K-562≈MOLM-13, but not in OCI-AML2 and HL-60. BCRP and MPR3 expression was low in all cell lines, whereas MRP4 and MRP5 expression was from moderate to high. Flow cytometry studies demonstrated that MRP4, but not MRP5, was functional. The expression of the organic cation transporter 1 (OCT1), involved in sorafenib uptake, was MOLM-13>OCI-AML2≈HL-60 and non detectable in HEL and K-562. Transfection of HEL cells with OCT1 increased the sensitivity of these cells to sorafenib, whereas inactive genetic variants failed to induce this change. CONCLUSION: Together with changes in the expression/function of receptors targeted by TKIs, the expression of plasma membrane transporters involved in sorafenib uptake/efflux may affect the response of leukemia cells to this drug.

20.
Am J Physiol Gastrointest Liver Physiol ; 315(3): G399-G407, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29927323

RESUMO

Intrahepatic cholestasis of pregnancy (ICP) is frequently accompanied by pruritus, whose etiology has been associated with an enhanced production of lysophosphatidic acid (LPA) by the combined action of phospholipase A1/A2 (PLA1/PLA2) and autotaxin (ATX). Here, we have investigated whether the placenta is involved in LPA release to maternal circulation during ICP. Serum levels of ATX and LPA (determined by ELISA) were elevated in women with ICP, and a correlation between both parameters was found. No relationship between serum levels of ATX or LPA and bile acids was found. Expression levels of ATX and PLA2 were determined by RT-qPCR and Western blot. Placenta ATX but not PLA2 was significantly upregulated in ICP, and a tendency to increase was found at the protein level. A correlation between serum ATX and placental ATX mRNA levels was found. In human placenta at term, ATX was clearly detected (by immunofluorescence) in Hofbauer cells, but only faintly in trophoblast cells. In pregnant rats, the expression of Atx and Pla2 in placenta was lower than in liver. When obstructive cholestasis was imposed by bile duct ligation from day 14 of gestation until term, placenta Atx and Pla2 expression was markedly enhanced, and overexpression was confirmed at the protein level for Pla2, whereas Atx protein was not detected. In conclusion, the placenta substantially participates in LPA production during gestation. This contribution is markedly higher during maternal cholestasis and hence, may be involved in ICP-associated pruritus. NEW & NOTEWORTHY Fetal placental macrophages and, to a lesser extent, trophoblast cells express high levels of autotaxin at term. An increased expression of mRNA and protein autotaxin, the key secretory enzyme responsible for the production of lysophosphatidic acid in serum, has been observed in placentas of women with cholestasis of pregnancy, which supports that the placenta can contribute to an increased production of this pruritogenic compound in women suffering from this liver disease.


Assuntos
Colestase Intra-Hepática/metabolismo , Fígado/metabolismo , Lisofosfolipídeos , Fosfolipases A1/metabolismo , Fosfolipases A2/metabolismo , Diester Fosfórico Hidrolases , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Feminino , Humanos , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo , Diester Fosfórico Hidrolases/sangue , Diester Fosfórico Hidrolases/metabolismo , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...